Conditional estimation of exponential random graph models from snowball sampling designs
نویسندگان
چکیده
A complete survey of a network in a large population may be prohibitively difficult and costly. So it is important to estimate models for networks using data from various network sampling designs, such as link-tracing designs. We focus here on snowball sampling designs, designs in which the members of an initial sample of network members are asked to nominate their network partners, their network partners are then traced and asked to nominate their network partners, and so on. We assume an exponential random graph model (ERGM) of a particular parametric form and outline a conditional maximum likelihood estimation procedure for obtaining estimates of ERGM parameters. This procedure is intended to complement the likelihood approach developed by Handcock and Gile (2010) by providing a practical means of estimation when the size of the complete network is unknown and/or the complete network is very large. We report the outcome of a simulation study with a known model designed to assess the impact of initial sample size, population size, and number of sampling waves on properties of the estimates. We conclude with a discussion of the potential applications and further developments of the approach. © 2013 Elsevier Inc. All rights reserved.
منابع مشابه
Snowball sampling for estimating exponential random graph models for large networks
The exponential random graph model (ERGM) is a well-established statistical approach to modelling social network data. However, Monte Carlo estimation of ERGM parameters is a computationally intensive procedure that imposes severe limits on the size of full networks that can be fitted. We demonstrate the use of snowball sampling and conditional estimation to estimate ERGM parameters for large n...
متن کاملConditional Marginalization for Exponential Random Graph Models
For exponential random graph models, under quite general conditions, it is proved that induced subgraphs on node sets disconnected from the other nodes still have distributions from an exponential random graph model. This can help in the theoretical interpretation of such models. An application is that for saturated snowball samples from a potentially larger graph which is a realization of an e...
متن کاملAuxiliary Parameter MCMC for Exponential Random Graph Models
Exponential random graph models (ERGMs) are a well-established family of statistical models for analyzing social networks. Computational complexity has so far limited the appeal of ERGMs for the analysis of large social networks. Efficient computational methods are highly desirable in order to extend the empirical scope of ERGMs. In this paper we report results of a research project on the deve...
متن کاملLearning with Blocks: Composite Likelihood and Contrastive Divergence
Composite likelihood methods provide a wide spectrum of computationally efficient techniques for statistical tasks such as parameter estimation and model selection. In this paper, we present a formal connection between the optimization of composite likelihoods and the well-known contrastive divergence algorithm. In particular, we show that composite likelihoods can be stochastically optimized b...
متن کاملA Bayesian Approach to Estimation with Link-tracing Sampling Designs
For inference from link-tracing designs, Frank and Thompson (1998) derived the likelihood function for the graph model. In addition, they provided the likelihood functions considered under the symmetric model and also an asymmetric model. In that paper, they used maximum likelihood estimators to est imate the graph model parameters. Here, we propose a Bayesian approach for the estimation proble...
متن کامل